Time Server History and The changing ways of recording time
The NTP server or network time server as it is often called is the culmination of centuries of horology and chronology. The history of keeping track of time has not been as smooth as you may think.
What month was the Russian October revolution? I’m sure you have guessed that it is a trick question, in fact if you trace the days back to the October revolution that changed the shape of Russia in 1917 you will find it didn’t start until November!
One of the first decisions the Bolsheviks, who had won the revolution, chose to make was to join the rest of eh world by taking up the Gregorian calendar. Russia was last to do adopt the calendar, which is still in use throughout the world today.
This new calendar was more sophisticated that the Julian calendar which most of Europe had been using since the Roman Empire. Unfortunately the Julian calendar did not allow for enough leap years and by the turn of the century this had meant that the seasons had drifted, so-much-so, that when Russia finally adopted the calendar on after Wednesday, 31 January 1918 the following day became Thursday, 14 February 1918.
So whilst the October revolution occurred in October in the old system, to the new Gregorian calendar it meant it had taken place in November.
Whilst the rest of Europe adopted this more accurate calendar earlier than the Russians they still also had to correct the seasonal drift, so in 1752 when Britain changed systems they lost eleven days which according to the populist painter of the time, Hogarth, caused rioters to demand the return of their lost eleven days.
This problem of inaccuracy in keeping track of time was thought to be solved in the 1950’s when the first atomic clocks were developed. These devices were so accurate that they could keep time for a million years without losing a second.
However, it was soon discovered that these new chronometers were in fact too accurate – compared with the Earth’s rotation anyway. The problem was that while atomic clocks could measure the length of a day to the nearest millisecond, a day is never the same length.
The reason being is that the Moon’s gravity affects the Earth’s rotation causing a wobble. This wobble has the effect of slowing down and speeding up the Earth’s spin. If nothing was done to compensate for this then eventually the time told by atomic clocks (International Atomic Time- TAI) and the time based on the Earth’s rotation used by farmers, astronomers and you and I (Greenwich Meantime- GMT) would drift that eventually noon would become midnight (albeit in many millennia).
The solution has been to devise a timescale that is based on atomic time but also accounts for this wobble of the Earth’s rotation. The solution was called UTC (Coordinated Universal Time) and accounts for the Earth’s variable rotation by having ‘leap seconds’ occasionally added. There have been over thirty leap seconds added to UTC since its inception in the 1970’s.
UTC is now a global timescale used throughout the world by computer networks to synchronise too. Most computer networks use a NTP server to receive and distribute UTC time.