The Sat Nav How it Works
The ‘sat-nav’ has revolutionised the way we travel. From taxi drivers, couriers and the family car to airliners and tanks, satellite navigation devices are now fitted in almost every vehicle as it comes off the production line. While GPS systems certainly have their flaws, they have several uses too. Navigation is just one of the main uses of GPS but it is also employed as a source of time for GPS NTP time servers.
Being able to pin point locations from space has saved countless lives as well as making travelling to unfamiliar destinations trouble free. Satellite navigation relies on a constellation of satellites known as GNSS (Global Navigational Satellite Systems). Currently there is only one fully functioning GNSS in the world which is the Global Positioning System (GPS).
GPS is owned and run by the US military. The satellites broadcast two signals, one for the American military and one for civilian use. Originally, GPS was meant solely for the US armed forces but following an accidental shooting down of an airliner, the then President of the US Ronald Reagan opened the GPS system to the world’s population to prevent future tragedies.
GPS has a constellation of over 30 satellites. At any one time at least four of these satellites are overhead, which is the minimum number required for accurate navigation.
The GPS satellites each have onboard an atomic clock. Atomic clocks use the resonance of an atom (the vibration or frequency at particular energy states) which makes them highly accurate, not losing as much as a second in time over a million years. This incredible precision is what makes satellite navigation possible.
The satellites broadcast a signal from the onboard clock. This signal consists of the time and the position of the satellite. This signal is beamed back to earth where your car’s sat nav retrieves it. By working out how long this signal took to reach the car and triangulating four of these signals the computer in your GPS system will work out exactly where you are on the face of the world. (Four signals are used because of elevation changes – on a ‘flat’ earth only three would be required).
GPS systems can only work because of the highly precise accuracy of the atomic clocks. Because the signals are broadcast at the speed of light and accuracy of even a millisecond (a thousandth of a second) could alter the positioning calculations by 100 kilometres as light can travel nearly 100,00km each and every second –currently GPS systems are accurate to about five metres.
The atomic clocks onboard GPS systems are not just used for navigation either. Because atomic clocks are so accurate GPS makes a good source of time. NTP time servers use GPS signals to synchronize computers networks to. A NTP GPS server will receive the time signal from the GPS satellite then convert it to UTC (Coordinated Universal Time) and distribute it to all devices on a network providing highly accurate time synchronization.