Setting up Windows XP as an NTP Server

  |   By

A network time server or NTP server (Network Time Protocol), is a central computer or server on a network that controls the time and synchronises all machines on that network to it.

Windows XP can be set up to operate as an NTP server to synchronise the rest of the computers and devices on a network. Setting up a Windows XP machine to act as a NTP server involves editing the registry, however, editing an operating system registry can lead to potential problems and should only be conducted by somebody with experience of registry editing.

To configure Windows XP as an NTP server the first thing to do is to open the registry editor in Windows. This is done by clicking the Start button and selecting “Run” from the menu. Enter “regedit” in the run menu and press return. This should open the Windows registry editor.

Select the: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\NtpServer\ folder in the left hand pane. This folder holds the values for the NTP server.

Right-click the “Enabled” key in the right window pane and select “Properties”. This should open a dialog box where you can alter the value of the registry key. Enter “1” in the window, setting the value to “True” which turns the XP computer into a time server.

Close the registry and open the DOS command prompt by clicking the Windows Start button, selecting “Run”. Then type “cmd” in the text box and press return.

Type “Net stop w32time” into the command prompt and press “Enter.” Now type “net start w32time” this will restart the time server for Windows XP.

However, the XP machine, which is now set as a NTP server, will merely distribute the time it currently holds. If this time is inaccurate then it will inaccurate time that is distributed amongst the network.

To ensure an accurate and secure source of time is used then a dedicated NTP time server that receives the time from an atomic clock source should be used.

The Possibility of Time Travel

  |   By

Exploring the possibilities of time travel including: Time paradoxes, worm holes, 4 dimesnsional space, atomic clocks and NTP servers

Time travel has always been a much loved concept for science fiction writers. From HG Wells’ Time Machine to Back to the Future, travelling forwards or backwards in time has captivated audiences for centuries. However, thanks to the work of modern thinkers like Einstein, it appears that time travel is much a possibility of science fact as it is fiction.

Time travel is not only possible but we do it all the time. Every second that passes is a second further into the future so we are all travelling forward in time. However we think if time travel we imagine a machine that transports individuals hundreds or thousands of years in to the future or past so is that possible.

Well, thanks to Einstein’s theories of general and special relativity, time ravel is certainly possible. We know thanks to the development of atomic clocks that Einstein’s theories about speed and gravity affecting the passage of time is correct. Einstein suggested that gravity would warp space-time (the term he gave to four dimensional space that includes directions plus time) and this has been tested. In fact modern atomic clocks can pick out the minute differences in the passage of time every subsequent inch above the earth’s surface as time speeds up as the effect of the earth’ s gravity weakens.

Einstein predicted speed too would affect time in what he described as time dilation. For any observer travelling close to the speed of light a journey that to an outsider may have taken thousands of years would have passed within seconds. Time dilation means that travelling hundreds of years into the future in a matter of seconds is certainly possible. However, would it be possible to get back again?

This is where many scientists are divided. Strictly speaking theoretical properties of space time do allow for this, although for any travelling back in time a worm hole would have to be created or found. A worm hole is a theoretical link between two parts of space where a traveller could enter one end and appear somewhere completely different at the other end this may be another part of the universe or indeed another point in time.

However, critics of the possibility of time travel point out that because travellers from the future have never visited us that probably means that time travel will never be possible. They also point out the any travelling backwards in time could create paradoxes (what would happen to you if you were mean enough to go back in time and kill your grandparents).

However, time paradoxes exist now. Many computer networks are not synchronised which can lead to errors, loss of data or paradoxes like emails being sent before they were received. To avoid any time crisis it is important for all computer networks to be perfectly synchronised. The best and most accurate method of doing this is to use a NTP time server that receives the time from an atomic clock.

What is the Best Source of UTC Time?

  |   By

UTC (Coordinated Universal Time) is the world’s global timescale and replaced the old time standard GMT (Greenwich Meantime) in the 1970’s.

Whilst GMT was based on the movement of the Sun, UTC is based on the time told by atomic clocks although it is kept inline with GMT by the addition of ‘Leap Seconds’ which compensates for the slowing of the Earth’s rotation allowing both UTC and GMT to run side by side (GMT is often mistakenly referred to as UTC – although as there is no actual difference it doesn’t really matter).

In computing, UTC allows computer networks all over the world to synchronise to the same time making possible time sensitive transactions from across the globe. Most computer networks used dedicated network time servers to synchronise to a UTC time source. These devices use the protocol NTP (Network Time Protocol) to distribute the time across the networks and continually checks to ensure there is no drift.

The only quandary in using a dedicated NTP time server is selecting where the time source comes from which will govern the type of NTP server you require. There are really three places that a source of UTC time can be easily located.

The first is the internet. In using an internet time source such as time.nist.gov or time.windows.com a dedicated NTP server is not necessarily required as most operating systems have a version of NTP already installed (in Windows just double click the clock icon to see the internet time options).

*NB it must be noted that Microsoft, Novell and others strongly advise against using internet time sources if security is an issue. Internet time sources can’t be authenticated by NTP and are outside the firewall which can lead to security threats.

The second method is to use a GPS NTP server; these devices use the GPS signal (most commonly used for satellite navigation) which is actually a time code generated by an atomic clock (from onboard the satellite). Whilst this signal is available anywhere on the globe, a GPS antenna does need a clear view of the sky which is the only drawback in using GPS.

Alternatively, many countries’ national physics laboratories such as NIST in the USA and NPL in the UK, transmit a time signal from their atomic clocks. These signals can be picked up with a radio referenced NTP server although these signals are finite and vulnerable to local interference and topography.

Leap Second Errors and Configuration

  |   By

Apart from the usual celebrations and revelry the end of December brought with the addition of another Leap Second to UTC time (Coordinated Universal Time).

UTC is the global timescale used by computer networks across the world ensuring that everybody is keeping the same time. Leap Seconds are added to UTC by the International Earth Rotation Service (IERS) in response to the slowing of the Earth’s rotation due to tidal forces and other anomalies. Failure to insert a leap second would mean that UTC would drift away from GMT (Greenwich Meantime) – often referred to as UT1. GMT is based on the position of the celestial bodies so at midday the sun is at its highest above the Greenwich Meridian.

If UTC and GMT were to drift apart it would make life difficult for people like astronomers and farmers and eventually night and day would drift (albeit in a thousand years or so).

Normally leap seconds are added to the very last minute of December 31 but occasionally if more than one is required in a year then is added in the summer.

Leap seconds, however, are controversial and can also cause problems if equipment isn’t designed with leap seconds in mind. For instance, the most recent leap second was added on 31 December and it caused database giant Oracle’s Cluster Ready Service to fail. It resulted in the system automatically rebooting itself on New Year.

Leap Seconds can also cause problems if networks are synchronised using Internet time sources or devices that require manual intervention.  Fortunately most dedicated NTP servers are designed with Leap Seconds in mind. These devices require no intervention and will automatically adjust the entire network to the correct time when there is a Leap Second.

A dedicated NTP server is not only self-adjusting requiring no manual intervention  but also they are highly accurate being stratum 1 servers (most Internet time sources are stratum 2 devices in other words devices that receive time signals from stratum 1 devices then reissue it) but they are also highly secure being external devices not required to be behind the firewall.

The NTP Server Time Synchronisation Made Easy

  |   By

Time synchronisation is often described as a ‘headache’ by network administrators. Keeping computers on a network all running the same time is increasingly important in modern network communications particularly if a network has to communicate with another network running independently.

For this reason UTC (Coordinated Universal Time) has been developed to ensure all networks are running the same accurate timescale. UTC is based on the time told by atomic clocks so it is highly precise, never losing even a second. Network time synchronisation is however, relatively straight forward thanks to the protocol NTP (Network Time Protocol).

UTC time sources are widely available with over a thousand online stratum 1 servers available on the Internet. The stratum level describes how far away a time server is to an atomic clock (an atomic clock that generates UTC is known as a stratum 0 device). Most time servers available on the Internet are in fact not stratum 1 devices but stratum in that they get their time from a device that in turn receives the UTC time signal.

For many applications this can be accurate enough but as these timing sources are on the Internet there is very little you can do to ensure both their accuracy and their precision. In fact even if an Internet source is highly accurate the distance away form it can cause delays int eh time signal.

Internet time sources are also unsecure as they are situated outside of the firewall forcing the network to be left open for the time requests. For this reason network administrators serious about time synchronisation opt to use their own external stratum 1 server.

These devices, often called a NTP server, receive a UTC time source from a trusted and secure source such as a GPS satellite then distribute it amongst the network. The NTP server is far more secure than an Internet based time source and are relatively inexpensive and highly accurate.

NTP Server Time synchronisation for Dummies

  |   By

Time synchronisation is extremely important for modern computer networks. In some industries time synchronisation is absolutely vital especially when you are dealing with technologies such as air traffic control or marine navigation where hundreds of lives could be put at risk by lack of precise time.

Even in the financial world, correct time synchronisation is vital as millions can be added or wiped off share prices every second. For this reason the entire world adheres to a global timescale known as coordinated universal time (UTC). However, adhering to UTC and keeping UTC precise are two different things.

Most computer clocks are simple oscillators that will slowly drift either faster or slower. Unfortunately this means that no matter how accurate they are set on Monday they will have drifted by Friday. This drift may be only a fraction of a second but it soon won’t take long for the originally UTC time to be over a second out.

In many industries this may not mean a matter of life and death of the loss of millions in stocks and shares but lack of time synchronisation can have unforeseen consequences such as leaving a company less protected from fraud. However, receiving and keeping true UTC time is quite straight forward.

Dedicated network time servers are available that uses the protocol NTP (Network Time Protocol) to continually check the time of a network against a source of UTC time. These devices are often referred to as an NTP server, time server or network time server. The NTP server constantly adjusts all devices on a network to ensure that the machines are not drifting from UTC.

UTC is available from several sources including the GPS network. This is an ideal source of UTC time as it is secure, reliable and available everywhere on the planet. UTC is also available via specialist national radio transmissions which are broadcast from national physics laboratories although they are not available everywhere.