Clocks that Changed Time

  |   By

If you’ve ever tried to keep track of time without a watch or clock, you’ll realise just how difficult it can be. Over a few hours, you may get to within half an hour of the right time, but precise time is very difficult to measure without some form of chronological device.

Before the use of clocks, keeping time was incredibly difficult, and even losing track of days of the years became easy to do unless you kept as daily tally. But the development of accurate timepieces took a long time, but several key steps in chronology evolved enabling closer and closer time measurements.

Today, with the benefit of atomic clocks, NTP servers and GPS clock systems, time can be monitored to within a billionth of a second (nanosecond), but this sort of accuracy has taken mankind thousands of years to accomplish.

 

Stonehenge–ancient timekeeping

Stonehenge

With no appointments to keep or a need to arrive at work on time, prehistoric man had little need for knowing the time of day. But when agriculture started, knowing when to plant crops became essential for survival. The first chronological devices such as Stonehenge are believed to have been built for such a purpose.

Identifying the longest and shortest days of the year (solstices) enabled early farmers to calculate when to plant their crops, and probably provided a lot of spiritual significance to such events.

Sundials

The provided the first attempts at keeping track of time throughout the day. Early man realised the sun moved across the sky at regular paths so they used it as a method of chronology. Sundials came in all sorts of guises, from obelisks that cast huge shadows to small ornamental sundials.

Mechanical Clock

The first true attempt at using mechanical clocks appeared in the thirteenth century. These used escapement mechanisms and weights to keep time, but the accuracy of these early clocks meant they’d lose over an hour a day.

Pendulum Clock

Clocks first became reliable and accurate when pendulums began appearing in the seventeenth century. While they would still drift, the swinging weight of pendulums meant that these clocks could keep track of first minutes, and then the seconds as engineering developed.

Electronic Clocks

Electronic clocks using quartz or other minerals enabled accuracy to parts of a second and enabled scaling down of accurate clocks to wristwatch size. While mechanical watches existed, they would drift too much and required constant winding. With electronic clocks, for the first time, true hassle free accuracy was achieved.

Atomic Clocks

Keeping time to thousands, millions and even billion parts of a second came when the first atomic clocks arrived in the 1950’s. Atomic clocks were even more accurate than the rotation of the Earth so Leap Seconds needed developing to make sure the global time based on atomic clocks, Coordinated Universal Time (UTC) matched the path of the sun across the sky.

 

Cyber Attacks and the Importance Time Server Security

  |   By

The media is full of stories of cyber terrorism, state sponsored cyber warfare and internet sabotage. While these stories may seem like they come from a science fiction plot, but the reality is that with so much of the world now dependent on computers and the internet, cyber attacks are a real concern for governments and businesses alike.

Crippling a website, a government server or tampering with systems like air-traffic control can have catastrophic effects—so no wonder people are worried. Cyber attacks come in so many forms too. From computer viruses and trojans, that can infect a computer, disabling it or transferring data to malicious users; distributed denial of service attacks (DDoS) where networks become clogged up preventing normal use; to border gateway protocol (BGP) injections, which hijack server routines causing havoc.

As precise time is so important for many technologies, with synchronisation crucial in global communication, one vulnerability that can be exploited is the online time server.

By sabotaging a NTP server (Network Time Protocol) with BGP injections, servers that rely on them can be told it’s a completely different time than it is; this can cause chaos and result in a myriad of problems as computers rely solely on time to establish if an action has or hasn’t taken place.

Securing a time source, therefore, is essential for internet security and for this reason, dedicated NTP time servers that operate externally to the internet are crucial.

Receiving time from the GPS network, or radio transmissions from NIST (National Institute for Standards and Time) or the European physical laboratories, these NTP servers can’t be tampered with by external forces, and ensure that the network’s time will always accurate.

All essential networks, from stock exchanges to air traffic controllers, utilise external NTP servers for these security reasons; however, despite the risks, many businesses still receive their time code from the internet, leaving them exposed to malicious users and cyber attacks.

Dedicated GPS Time Server--immune to cyber attacks

Keeping Track of Global Time

  |   By

So much business these days is conducted across borders, countries and continents. Global trade and communication is an important aspect for all sorts of industries, trades and businesses.

Of course, communicating across borders often means communicating across time zones too, and this poses problems for both people and computers. When those in United States start work, Europeans are half way through their day, while those in the Far East have gone to bed.

Knowing the time in several countries is, therefore, important for many people, but fortunately, many solutions exist to help.

Modern operating systems like Windows 7 have facilities that allow you to show several time zones on the computer clock, while web pages and apps such as:  https://www.worldtimebuddy.com offer an easy way to work out the different time across time zones.

Many offices use multiple analogue and digital wall clocks to provide staff with easy access to the time in important trade countries, sometimes these use atomic clock receivers to maintain perfect accuracy, but what about computers? How do they deal with different time zones?

The answer lies in the global timescale UTC (Coordinated Universal Time). UTC was developed following the invention of atomic clocks. Kept precise by a constellation of these super-accurate clocks, UTC is the same across the globe enabling computers to communicate effectively without the differences in time zones affecting functionality.

To ensure preciseness in communication, computer networks need an accurate source of UTC as system clocks are nothing more than quartz oscillators, which can drift by several seconds a day—a long time for computer communication.

A software protocol, NTP (Network Time Protocol) ensures that this time source is distributed around the network, maintaining its accuracy.

NTP servers receive the source of UTC, often from sources such as GPS or radio referenced signals broadcast by NPL in the UK (National Physical Laboratory—transits the MSF signal from Cumbria) or NIST in the USA (National Institute of Standards and Time—transmits the WWVB signal from Colorado).

With UTC and NTP time servers, computer networks across the globe can communicate precisely and error-free enabling trouble free computing and truly global communication.

NTP server

Differing Perceptions of Time

  |   By

When you tell somebody you’ll be an hour, ten minutes or a day, most people have a good idea how long they need to wait; however, not everybody has the same perception of time, and in fact, some people have no perception of time at all!

Scientists studying a newly discovered Amazonian tribe have found that they have no abstract concept of time, according to news reports.

The Amondawa, first contacted by the outside world in 1986, while recognising events occurring in time, do not recognise time as a separate concept, lacking the linguistic structures relating to time and space.

Not only do the Amondawa have no linguistic ability to describe time, but concepts like working throughout the night, would not be understood as time has no meaning to their lives.

While most of us in the western world tend to live by the clock, we all in fact have continuous different perceptions of time. Ever noticed how time flies when you’re having fun, or goes very slowly during times of boredom? Our time perceptions can vary greatly depending on the activities that we are undertaking.

Fighter pilots, Formula One drivers and other sportsmen often talk of “being in the zone” where time slows down. This is due to the intense concentration they are putting into their endeavours, slowing down their perceptions.

Regardless of out differing time perceptions, time itself can alter as Einstein’s Special Theory of Relativity demonstrated. Einstein suggested that gravity and intense speeds will alter time, with large planetary masses warping space-time slowing it down, while at very high speeds (close to the speed of light) space travellers could partake a journey that to observers would seem several thousands of years, but be just seconds to those travelling at such speeds.

And if Einstein’s theories seem far-fetched, it has been tested using ultra-precise atomic clocks. Atomic clocks on aeroplanes travelling around the Earth, or placed farther away from the Earth’s orbit, have minute differences to those remaining at sea-level or stationary on Earth.

Atomic clocks are useful tools for modern technologies and help to ensure that the global timescale, Universal Coordinated Time (UTC), is kept as accurate and true as possible. And you don’t need to own your own tomake sure your computer network is kept true to UTC and is hooked up to an atomic clock. NTP time servers enable all sorts of technologies to receive an atomic clock signal and keep as accurate as possible. You can even buy atomic clock wall clocks that can provide you the precise time no matter how much the day is “dragging” or “flying”.

 

 

Most Accurate Atomic Clock Yet

  |   By

A new atomic clock as accurate as any produced has been developed by the University of Tokyo which is so accurate it can measure differences in Earth’s gravitational field—reports the journal Nature Photonics.

While atomic clocks are highly accurate, and are used to define the international timescale UTC (Coordinated Universal Time), which many computer networks rely on to synchronise their NTP servers to, they are finite in their accuracy.

Atomic clock use the oscillations of atoms emitted during the change between two energy states, but currently they are limited by the Dick effect, where noise and interference generated by the lasers used to read the frequency of the clock, gradually affect the time.

The new optical lattice clocks, developed by Professor Hidetoshi Katori and his team at the University of Tokyo, get around this problem by trapping the oscillating atoms in an optical lattice produced by a laser field. This makes the clock extremely stable, and incredibly accurate.

Indeed the clock is so accurate Professor Katori and his team suggest that not only could it man future GPS systems become accurate to within a couple of inches, but can also measure the difference in the gravitation of the Earth.

As discovered by Einstein in his Special and General Theories of Relativity, time is affected by the strength of gravitational fields. The stronger the gravity of a body, the more time and space is bent, slowing down time.

Professor Katori and his team suggest that this means their clocks could be used to find oil deposits below the Earth, as oil is a lower density, and therefore has a weaker gravity than rock.

Despite the Dick Effect, traditional atomic clocks currently used to govern UTC and to synchronise computer networks via NTP time servers, are still highly accurate and will not drift by a second in over 100,000 years, still accurate enough for the majority of precise time requirements.

However, a century ago the most accurate clock available was an electronic quartz clock that would drift by a second a day, but as technology developed more and more accurate time pieces were required, so in the future, it is highly possible that these new generation of atomic clocks will be the norm.

The Truth about Time

  |   By

As a manufacturer of NTP time servers, synchronizing computer networks and keeping them accurate to within a few milliseconds of international UTC time (Coordinated Universal Time), we often think we can keep pretty good track of time.

Time, however, is quit elusive and is not the fixed entity we often assume it is, indeed time, and the time told on Earth is not constant and is affected by all sorts of things.

Since Einstein’s famous equation, E=MC2 it has been acknowledged that time is not constant, and that the only constant in the universe is the maximum velocity of light. Time, as Einstein discovered, is affected by gravity, making the time on Earth run slightly slower than time in deep space, likewise, on planetary bodies with a larger mass than Earth, time runs even slower.

Time slows down when you approach very fast speeds too. The property of time, known as time dilation, was discovered by Einstein and means that at close to the speed of light, time almost stands still (and makes interstellar travel a possibility for science fiction writers).

Generally, living on Earth, these differences in time are not felt, and indeed the slowing of time caused by Earth’s gravity is so minute, highly precise atomic clocks are required to measure it.

However, the time we use to govern our lives is also affected by other factors. Since humans first evolved, we have been used to a day lasting just over 24 hours.  However, the length of a day on Earth is not fixed, and has been changing for the last few billion years.

Each day on Earth differs from the previous to the next one. Often these differences are minute, but year on year, the changes add up as the affect of the moon’s gravity and tidal forces act as a brake on the Earth’s spin.

To cope with this, the global timescale UTC (Coordinated Universal Time) has to be adjusted to prevent the day from drifting out of sync (and we end up with noon at night and midnight during the day—although at the current slowing of the Earth, this would take many thousands of years).

The adjustment in our time is known as leap seconds which are added either once or twice a year to UTC. Anybody using a NTP time server (Network Time Protocol) to synchronise their computer network too, needn’t worry, however, as NTP servers will automatically account for these changes.

The Fragility of Time Japanese Earthquake Shortens the Day

  |   By

The recent and tragic earthquake that has left so much devastation in Japan has also highlighted an interesting aspect about the measurement of time and the rotation of the Earth.

So powerful was the 9.0 magnitude earthquake, it actually shifted Earth axis by 165mm (6½ inches) according to NASA.

The quake, one of the most powerful felt on Erath over the last millennia, altered the distribution of the planet’s mass, causing the Earth to rotate on its axis that little bit faster and therefore, shortening the length of every day that will follow.

Fortunately, this change is so minute it is not noticeable in our day to day activities as the Earth slowed by less than a couple of microseconds (just over a millionth of a second), and it isn’t unusual for natural events to slow down the speed of the Earth’s rotation.

In fact, since the development of the atomic clock in the 1950’s, it has been realised the Earth’s rotation is never continual and in fact has been increasing very slightly, most probably for billions of years.

These changes in the Earth’s rotation, and the length of a day, are caused by the effects of the moving oceans, wind and the gravitational pull of the moon. Indeed, it has been estimated that before humans arrived on Earth, the length of a day during the Jurassic period (40-100 million years ago) the length of a day was only 22.5 hours.

These natural changes to the Earth’s rotation and the length of a day, are only noticeable to us thanks to the precise nature of atomic clocks which have to account for these changes to ensure that the global timescale UTC (Coordinated Universal Time) doesn’t drift away from mean solar time (in other words noon needs to remain when the sun is highest during the day).

To achieve this, extra seconds are occasionally added onto UTC. These extra seconds are known as leap seconds and over thirty have been added to UTC since the 1970’s.

Many modern computer networks and technologies rely on UTC to keep devices synchronised, usually by receiving a time signal via a dedicated NTP time server (Network Time Protocol).

NTP time servers are designed to accommodate these leap seconds, enabling computer systems and technologies to remain accurate, precise and synchronised.

Keeping the World Ticking Over The Global Timekeepers

  |   By

When we want to know the time it is very simple to look at a clock, watch or one of the myriad devices that display the time such as our mobile phones or computers. But when it comes to setting the time, we rely on the internet, speaking clock or somebody else watch; however, how do we know these clocks are right, and who is it that ensures that time is accurate at all?

Traditionally we have based time on Earth in relation to the rotation of the planet—24 hours in a day, and each hour split into minutes and seconds. But, when atomic clocks were developed in the 1950’s it soon became apparent that the Earth was not a reliable chronometer and that the length of a day varies.

In the modern world, with global communications and technologies such as GPS and the internet, accurate time is highly important so ensuring that there is a timescale that is kept truly accurate is important, but who is it that controls global time, and how accurate is it, really?

Global time is known as UTC—coordinated Universal Time. It is based on the time told by atomic clocks but makes allowances for the inaccuracy of the Earth’s spin by having occasional leap seconds added to UTC to ensure we don’t get into a position where time drifts and ends up having no relation to the daylight or night time (so midnight is always at day and noon is in the day).

UTC is governed by a constellation of scientists and atomic clocks all across the globe. This is done for political reasons so no one country has complete control over the global timescale. In the USA, the National Institute for Standards and Time (NIST), helps govern UTC and broadcast a UTC time signal from Fort Collins in Colorado.

While in the UK, the National Physical Laboratory (NPL) does the same thing and transmits their UTC signal from Cumbria, England. Other physics labs across the world have similar signals and it is these laboratories that ensure UTC is always accurate.

For modern technologies and computer networks, these UTC transmissions enable computer systems across the globe to be synchronised together. The software NTP (Network Time Protocol) is used to distribute these time signals to each machine, ensuring perfect synchronicity, while NTP time servers can receive the radio signals broadcast by the physics laboratories.

How GPS Keeps Clocks Accurate

  |   By

While many of us are aware of GPS (Global Positioning System) as a navigational tool and many of us have ‘sat navs’ in our cars, but the GPS network has another use that is also important to our day-to-day lives but few people realise it.

GPS satellites contain atomic clocks which transmit to earth an accurate time signal; it is this broadcast that satellite navigation devices use to calculate global position. However, there are other uses for this time signal besides navigation.

Nearly all computer networks are kept accurate to an atomic clock. This is because miniscule accuracies across a network can lead to until problems, from security issues to data loss. Most networks use a form of NTP (Network Time Protocol) to synchronise their networks, but NTP requires a main time source to sync to.

GPS is ideal for this, not only is it an atomic clocks source, which NTP can calculate UTC (Coordinated Universal Time) from, which means that the network will be synchronised to every other UTC network on the globe.

GPS is an ideal source of time as it is available literally everywhere on the planet as long as the GPS antenna has a clear view of the sky. And it is not only computer networks that require atomic clock time, all sorts of technologies require accurate synchronisation: traffic lights, CCTV cameras, air traffic control, internet servers, indeed many modern applications and technology without us realising is being kept true by GPS time.

Top use GPS as a source of time, a GPS NTP server is required. These connect to routers, switches or other technology and receive a regular time signal from the GPS satellites. The NTP server then distributes this time across the network, with the protocol NTP continually checking each device to ensure it is not drifting.

GPS NTP servers are not only accurate they are also highly secure. Some network administrators use internet time servers as a source of time but this can lead to problems. Not only is the accuracy of many of these sources questionable, but the signals can be hijacked by malicious software which can breach the network firewall and cause mayhem.

Keeping a Windows 7 Network Secure, Reliable and Accurate

  |   By

Many modern computer networks are now running Microsoft’s latest operating system Window 7, which has many new and improved features including the ability to synchronise time.

When a Windows 7 machine is booted up, unlike previous incarnations of Windows, the operating system automatically attempts to synchronise to a time server across the internet to ensure the network is running accurate time. However, while this facility is often useful for residential users, for business networks it can cause many problems.

Firstly, to allow this synchronisation process to happen, the company firewall must have an open port (UDP 123) to allow the regular time transference. This can cause security issues as malicious users and bots can take advantage of the open port to penetrate into the company network.

Secondly, while the internet time servers are often quite accurate, this can often depend on your distance from the host, and any latency caused by network or internet connection can further cause inaccuracies meaning that you system can often be more than several seconds away from the preferred UTC time (Coordinated Universal Time).

Finally, as internet time sources are stratum 2 devices, that is they are servers that do not receive a first-hand time code, but instead receive a second hand source of time from a stratum 1 device (dedicated NTP time server – Network Time Protocol) which also can lead to inaccuracy – these stratum 2 connections can also be very busy preventing your network from accessing the time for prolonged periods risking drifting.

To ensure accurate, reliable and secure time for a Windows 7 network, there is really no substitute than to use your own stratum 1 NTP time server. These are readily available from many sources and are not very expensive but the peace of mind they provide is invaluable.

Stratum 1 NTP time servers receive a secure time signal direct from an atomic clock source. The time signal is external to the network so there is no danger of it being hijacked or any need to have open ports in the firewall.

Furthermore, as the time signals come from a direct atomic clock source they are very accurate and don’t suffer any latency problems. The signals used can be either through GPS (Global Positioning System satellites’ have onboard atomic clocks) or from radio transmissions broadcast by national physics laboratories such as NIST in the USA (broadcast from Colorado), NPL in the UK (transmitted form Cumbria) or their German equivalent (from Frankfurt).