Difficulties in telling the time!

By on

Precision in telling the time has never been as important as it is now. Ultra precise atomic clocks are the foundation for many of the technologies and innovations of the twentieth century. The internet, satellite navigation, air traffic control and global banking all just a few of the applications that is reliant on particularly accurate timekeeping.

The problem we have faced in the modern age is that our understanding exactly of what time is has changed tremendously over the last century. Previously it was thought that time was constant, unchanging and that we travelled forward in time at the same rate.

Measuring the passing of time was straight forward too. Each day, governed by the revolution of the Earth was divided into 24 equal amounts – the hour.  However, after the discoveries of Einstein during the last century, it was soon discovered time was not at all constant and could vary for different observers as speed and even gravity can slow it down.

As our timekeeping became more precise another problem became apparent and that was the age old method of keeping track of the time, by using the Earth’s rotation, was not an accurate method.

Because of the Moon’s gravitational influence on our oceans, the Earth’s spin is sporadic, sometimes falling short of the 24 hour day and sometimes running longer.

Atomic clocks were developed to try to keep time as precise as possible. They work by using the unchanging oscillations of an atom’s electron as they change orbit. This ‘ticking’ of an atom occurs over nine billion times a second in caesium atoms which makes them an ideal basis for a clock.

This ultra precise atomic clock time (known officially as International Atomic Time – TAI) is the basis for the world’s official timescale, although because of the need to keep the timescale in parallel with the rotation of the Earth (important when dealing with extra terrestrial bodies such as astronomical objects or even satellites) addition seconds, known as leap second, are added to TAI, this altered timescale is known as UTC – Coordinated Universal Time.

UTC is the timescale used by businesses, industry and governments all around the world. As it is governed by atomic clocks it means the entire world can communicate using the same timescale, governed by the ultra-precise atomic clocks. Computer networks all over the world receive this time using NTP servers (Network Time Protocol) ensuring that everybody has the same time to within a few milliseconds.

hello

This post was written by:

Richard N Williams is a technical author and a specialist in the NTP Server and Time Synchronisation industry. Richard N Williams on Google+