Category: ntp server

How accurate does NTP Synchronisation need to be?

  |   By

Computers advance at a remarkable rate; in effect computers double in power, speed and memory every five years, and with such advances in technology many people assume that the clocks that control the time of a computer are just as powerful.

However, nothing could be further from the truth; most system clocks are crude crystal oscillators that are prone to drift, which is why computer time synchronisation is so important.

In modern computing, nearly every aspect of managing a network is reliant on time. Timestamps are the only frame of reference a computer has to ascertain if an event has occurred, is due to, or shouldn’t occur.

From debugging, to conducting time sensitive transactions over the internet, accurate time is essential. But how accurate does it have to be?

Coordinated Universal Time

Coordinated Universal Time (UTC) is a global timescale derived from atomic clocks. UTC was developed to allow technological devices, such as computer networks, to communicate with a single time.

Most computer networks use time servers governed by NTP (Network Time Protocol) to distribute UTC across the network. For most applications, accuracy to within a few hundred milliseconds is sufficient – but achieving this accuracy is where the difficulty lies.

Getting an accurate source of time

There are several options for synchronizing a network to UTC. Firstly, there is the internet. The internet is awash with time servers that proclaim to supply an accurate source of UTC. However, surveys of these online sources of time indicate that many of them are wholly inaccurate being seconds, minutes and even days out.

And even the most accurate and respected sources from NIST (National Institute of Standards and Time) and Microsoft, can vary depending on the distance your network is away.

Dedicated Time servers

Dedicated NTP time servers use a more direct approach to achieve accurate synchronisation. Using atomic clocks, either from the GPS satellite network or from physics laboratories (like NIST and the UKs NPL); the time is beamed directly to the NTP time server that is connected to the network.

Because dedicated devices like this receive the time directly from atomic clocks they are incredibly accurate, enabling the entire network to be synchronised to within just a few milliseconds of NTP.

Solar Flares and the Vulnerability of GPS

  |   By

Whilst GPS is commonly associated with satellite navigation and wayfinding, many technologies and computer networks rely on the GPS satellite system for a source of accurate time.

GPS time servers utilise the onboard atomic clocks of the global positing satellites and use this stable and accurate time source as a basis for their NTP synchronisation (Network Time Protocol)

GPS has become the preferred source of atomic clock time for many network operators. There are other methods where UTC (Coordinated Universal Time) can be used; radio signals and across the internet to name but two sources, but none is as secure or readily available as GPS.

Unlike radio signals, GPS is available everywhere on the planet, is never down for scheduled maintenance and is not commonly vulnerable to interference. It also doesn’t have any security implications like connecting across an internet firewall to an online time server can.

However, this doesn’t mean GPS is completely invulnerable as recent news reports have suggested.
It has been recently reported that a sunspot (sunspot 1092) the size of the Earth has flared up and a massive coronal ejection (solar flare), described in the press as a “solar tsunami” which was suggested to be large enough to satellites and wreck power and communications grids.

Solar activity, such as sunspots and solar flares (ejected hot plumes of plasma and radiation from the sun), have long been known to be able to damage and even disable satellites.

GPS is particularly vulnerable because of the high orbits of geostationary satellites (some 22,000 miles up) this leaves them unprotected by the earth’s magnetic field.

However, following the recent solar activity there has been no reported damage to the GPS system but as so many people rely on satellite navigation and GPS time for NTP servers could a future solar storm lead to havoc on Earth?

Well the short answer is yes; GPS satellites have been in orbit for several decades and while redundant satellites were introduced into the system many have been used up due to previous failures and it would only take a couple of disabled satellite to cause real problems for the network.

Fortunately, help is at hand as the Europeans, Russians and Chinese are all working on their own GPS equivalents which should work hand-in-hand with the American GPS network allowing GPS receivers to pick and choose from all four GNSS networks (Global Navigational Satellite Systems) ensuring that even if a really violent solar storm hits in the future there will be more than enough geo stationary satellites to ensure no loss of signal.

Using Windows 7 and Reasons Your Network Still Needs an NTP Server

  |   By

Time synchronisation becomes more and more relevant as we become more dependent on the internet. With so many time sensitive transactions conducted across the globe, from banking and commerce to sending emails, the correct and accurate time is vital in preventing errors and ensuring security.

Increasingly, more and more people are relying on sources of internet time especially with many of the modern flavours of Microsoft’s Windows such as Windows 7 having NTP and time synchronisation abilities already installed.

Windows 7 and Time Synchronisation

Windows 7 will, straight out of the box, attempt to find a source of internet time; however, for a networked machine this does not necessarily mean the computer will be synchronised accurately or securely.

Internet time sources can be wholly unreliable and unsecure for a modern computer network. Internet time has to come through the firewall and as a gap is left for these time codes to come through, malicious software can take advantage of this firewall hole too.

Not only can the accuracy of these devices vary depending on the distance away your network is but also an internet time source very rarely comes direct from an atomic clock.

In fact, most internet time sources are known as stratum 2 devices. This means they connect to another device – a stratum 1 device – namely a NTP time server which gets the time directly from the clock and transmits it to the stratum 2 device.

Stratum 1 NTP time servers

For true accuracy and security, there is no replacement for your network’s own stratum 1 NTP server. Not only are these devices secure, receiving a time source externally to the firewall (often using GPS) but also they receive these signals direct from atomic clocks (The GPS satellite that transmits this signal has an onboard atomic clock that generates the time.

Using Internet Time for Computer Synchronization

  |   By

Ensuring your network is synchronized is a vital part of modern computing. Failure to do so, and having different machines telling different times is a recipe for disaster and can cause untold problems, not to mention making it almost impossible to debug or log errors.

And it is not just your own network you need to synchronize to either. With so many networks talking to each other, it is important that all networks synchronize to the same time-scale.

UTC (Coordinated Universal Time) is just such a global timescale. It is controlled by an international constellation of atomic clocks and enables computers all over the world to talk to each other in perfect synchronicity.

But how do you sync to UTC?

The internet is awash with sources of internet time. Most modern operating systems, especially in the Windows flavour, are set up to do this automatically (just by clicking the time/date tab on the clock menu). The computer will then regularly check the time server (usually at Microsoft or NIST, although others can be used) and adjust the computer to ensure its time matches.

Most internet time servers are known as stratum 2 devices. This means they take the time from another device but where does that get the time from?

NTP time servers

The answer is that somewhere on the stratum tree there will be a stratum 1 device. This will be a time server that receives the time direct from an atomic clock source. Often this is by GPS but there are radio referenced alternatives in several countries. These stratum 1 NTP (Network Time Protocol) time servers then provide the stratum 2 devices with the correct time – and its these devices we get our internet time from.

Drawbacks to Internet time

There are several drawbacks to relying on the Internet for time synchronisation. Accuracy is one consideration. Normally, a stratum 2 device will provide ample enough precision for most networks; however, for some users who require high levels of accuracy or deal in a lot of time sensitive transactions a stratum 2 time server may not be accurate enough.

Another problem with internet time servers is that they require an open port in the firewall. Keeping the NTP access on UDP port 123 open all the time could lead to security issues, especially as internet time sources can’t be authenticated or guaranteed.

Using a Stratum 1 NTP Time server

Stratum 1 NTP time servers are easily installed on most networks. Not only will they provide a higher accurate source of time but as they receive the time externally (from GPS or radio) they are highly secure and can’t be hijacked by malicious users or viral software.

MSF Downtime No Signal 26th and 27th July

  |   By

The UK’s time and frequency signal MSF, provided by the National Physical Laboratory out of Cumbria, will be down for essential maintenance on 26 and 27 July.

The unplanned downtime is to allow essential maintenance to be carried out in safety. The MSF transmitter will stop broadcasting the MSF signal on 26 and 27 July between 08.00 and 20.00 (BST – 07:00 GMT/UTC) although it is possible the maintenance may be finished ahead of schedule in which case the signal will be turned on earlier.

Future maintenance is scheduled for the following times when the signal will also be turned off:

• 9 September 2010 from 10:00 BST to 14:00 BST
• 9 December 2010 from 10:00 UTC to 14:00 UTC
• 10 March 2011 from 10:00 UTC to 14:00 UTC

Problems for Time Synchronisation

Generally, most NTP time servers should be able to maintain a stable time during these brief outages and users of MSF time synchronisation devices should not experience any difficulties with the lack of MSF signal.

However, those users who require high levels of accuracy and reliability and find the MSF outages affect them should perhaps look to a GPS NTP server.

GPS time servers receive their time signals from the GPS network which is available 24 hours a day, 365 days a year and never experiences any outages.

MSF Downtime – No Signal 26/27 July

Time to get accurate Atomic clock time servers for computer networks

  |   By

Accurate and precise time is increasingly becoming a necessity for computer systems. From corporate networks to public service technologies such as ATMs, traffic lights or CCTV cameras – precise time is what keeps them ticking.

Inaccurate or unsynchronised time is the root cause for many technology breakdowns and failures.  For instance, failing to synchronize a traffic lights system can lead to all sorts of confusion of the lights change at the wrong time – and the consequences for systems belonging to industries such as air traffic control could be even worse.

And even a standard computer network such as those used in most offices requires accurate synchronisation to prevent errors, enable debugging and to ensure the system is secure.

Most system administrators are now aware of the importance of accurate and precise time synchronisation but getting a source of accurate time is often where many people make mistakes.

Many network administrators are aware of the time protocol NTP (Network Time Protocol) which is used to ensure accurate synchronisation between computers.

However, many administrators make the mistake of using a source of time from across the internet to distribute with NTP – a common pitfall that can have disastrous consequences.

The internet is not the best source of tine. While it is true, many online NTP servers are available as a source of atomic time or UTC (Coordinated Universal Time) but are they accurate. The truth is it is almost impossible to know. Internet time sources can be affected by the distance of the client (the network) from the time source – it also can’t be authenticated by NTP.

Even more important, internet time sources operate through the firewall which can allow the time signal to be hijacked by malicious programs.

The only secure and accurate method of synchronising a computer network or other technology system is to use an NTP server. These devices receive an external atomic clock time signal often by GPS or even by radio transmissions.

These signals are come direct from atomic clocks so are highly accurate they also can’t be hijacked as they are not connected to the internet.

Ensure Accurate Time with an Atomic Wall Clock

  |   By

Written By Richard Williams for Galleon Systems

Accuracy in timekeeping is forever becoming more important in the modern global economy. Industries and business around the globe are now often communicating with each despite the time zone differences.

There was a time when a few minutes here or there rarely mattered but now, knowing exactly what time it is has become more and more important as conference calls and over-the-internet webinars are often scheduled as part of regular business.

Global Timescale

Fortunately, to prevent the headache of working out all the different time-zones you may have to deal with, there is a global timescale that is now adopted by the global community. UTC (Coordinated Universal Time) is an atomic clock controlled time used globally and kept precise and accurate by physics laboratories around the world.

UTC enables accurate communication and forms and is used by many high end technologies to ensure accuracy such as the network time server (NTP server – Network Time Protocol). Often these devices receive the UTC time directly from atomic clocks thanks to radio broadcasts from people like NIST (USA’s National Institute for Standards and Time) and NPL (UK’s National Physical Laboratory)

Atomic Wall Clocks

And when it comes to people telling the time, these same radio signals can also be utilised by an atomic wall clock. Atomic wall clocks, despite what the name suggests, are not atomic clocks. In essence they are comprised of a standard clock device and a radio antenna and receive. The atomic clocks signals broadcast by the physics laboratories can be received and the clock regularly adjusts itself to ensure that the clock is accurate to UTC to the second.

Choosing a Source of Time for Computer Network Synchronization

  |   By

You don’t need me to tell you how important computer network time synchronization is. If you are reading this then you are probably well aware of the importance in ensuring all your computers, routers and devices on your network are running the same time.

Failure to synchronize a network can cause all sorts of problems, although with a lack of synchronicity the problems may go unnoticed as error finding and debugging a network can be nigh on impossible without a source of synchronized time.

There are multiple options for finding a source of accurate time too. Most time sources used for synchronisation are a source of UTC (Coordinated Universal Time) which is the international timescale.
However, there are pro’s and con’s to all sources:

Internet time

There are an almost an endless number of sources of UTC time on the internet. Some of these time sources are wholly inaccurate and unreliable but there are some trusted sources put out by people like NIST (National Institute for Standards and Time) and Microsoft.

However, regardless of how trusted the time source is, there are two problems with internet time sources. Firstly, an internet time server is actually a stratum 2 device. In other words, an internet time server is connected to another time server that gets its time from an atomic clock, usually from one of the sources below. So an internet source of time is never going to be as accurate or precise as using a stratum 1 time server yourself.

Secondly, and more importantly, internet sources of time operate through the firewall so a potential security breach is available to any malicious user who wishes to take advantage of the open ports.

GPS Time

GPS time is far more secure. Not only is a GPS time signal available anywhere with a line of sight view of the sky, but also GPS time signals can be received externally to the network. By using a GPS time server the GPS time signals can be received and by using NTP (Network Time Protocol) this time can be converted to UTC (GPS time is currently 17 seconds exactly behind GPS time) then distributed around the network.

MSF/WWVB Time

Radio broadcasts in long wave are transmitted by several national physics labs. NIST and the UK’s NPL are two such organisations and they transmit the UTC signals MSF (UK) and WWVB (USA) which can be received and utilised by a radio referenced NTP server.

When Time Servers go Bad

  |   By

“Time is what prevents everything from happening at once,’ said eminent physicist John Wheeler. And when it comes to computers his words couldn’t be any more relevant.

Timestamps are the only method that a computer has to establish if an event has occurred, is meant to occur or shouldn’t be occurring just yet. For a home PC, the computer relies on the inbuilt clock that displays the time on the corner of your operating system, and for most home uses this is satisfactory enough.

However for computer networks that have to communicate with each other, relying in individual system clocks can cause untold problems:

All clocks drift, and computer clocks are no different and problems occur when two machines are drifting at different rates as the time does not match up. This poses a conundrum for a computer as it is unsure of which time to believe and time critical events can fail to occur and even simple tasks like sending an email can cause time confusion on a network.

For these reasons, time servers are commonly used to receive the time from an external source and distribute it around the network. Most of these devices use the protocol NTP (Network Time Protocol) which is designed to provide a method of synchronising time on a network.

However, time servers are only as good as the time source that they rely on and when there is a problem with that source, synchronisation will fail and the problems mentioned above can occur.

The most common cause for time server failure or inaccuracy is the reliance on internet based sources of time. These can neither be authenticated by NTP nor guaranteed to be accurate and they can also lead to security issues with firewall intrusion and other malicious attacks.

Ensuring the NTP time server continues to get a source of highly accurate time is fairly straight forward and is all a matter of choosing an accurate, reliable and secure time source.

In most parts of the world there are two methods that can provide a secure and reliable source of time:

  • GPS time signals
  • Radio referenced time signals

GPS signals are available anywhere on the planet and are based on GPS time which is generated by atomic clocks onboard the satellites.

Radio referenced signals like MSF and WWVB are broadcast on long wave from physics laboratories like NIST and NPL.

Common Internet Time Synchronisation Issues

  |   By

Keeping the clock on a PC system synchronised is important for many systems, networks and users that need time accuracy for applications and transactions. Nearly everything on a modern computer system is time reliant so when synchronisation fails all sorts of issues can arise from data getting lost and debugging becoming near impossible.

There are several methods of synchronising a computer system’s clock but the majority of them rely on the time synchronisation protocol NTP (Network Time Protocol).

By far the most common method is to make use of the myriad of online NTP time servers that relay the UTC time (Coordinated Universal Time). However, there are many common issues in using internet based time servers – here are some of them:

Can’t access the Internet time server

A common occurrence with Internet time sources is the inability to access them. This can be caused by several reasons:

• Too much traffic trying to access the server
• Website is down
• Your connection is down

The time from the time server is innacuurate

Most online sources of time are what are known as stratum 2 time servers. This means they get their time from another time server (stratum 1) that it connected to an atomic clock (stratum 0). If there is an error with the stratum 1 device the stratum 2 device will be wrong (and every device that is trying to get the time from it).

The time server is leading to security problems with the firewall

Another common problem caused by the fact that all online time servers need access through your firewall. Unfortunately this gives the opportunity for malicious users to make use of this back door into your system.

Eliminating Time Server Issues

Internet time sources are neither guaranteed to be accurate, reliable or secure so for any serious time synchronisation requirements an external source of time should be used. NTP time servers that plug into a network and receive the time from GPS or radio sources are a much more secure and reliable alternative. These NTP servers are also highly secure as they do not operate across the Internet.