Category: ntp server

The NTP Server and the Atomic Clock Reason for Precision

  |   By

In an age of atomic clocks and the NTP server time keeping is now more accurate then ever with ever increasing precision having allowed many of the technologies and systems we now take for granted.

Whilst timekeeping has always been a preoccupation of mankind, it has only been in the last few decades that true accuracy has been possible thanks to the advent of the atomic clock.

Before atomic time, electrical oscillators like those found in the average digital watch were the most accurate measure of time and whilst electronic clocks like these are far more precise than their predecessors – the mechanical clocks, they can still drift by up to a second a week.

But why does time need to be so precise, after all, how important can a second be? In the day-to-day running of our lives a second isn’t that important and electronic clocks (and even mechanical ones) provide adequate timekeeping for our needs.

In our day-to-day lives a second makes little difference but in many modern applications a second can be an age.

Modern satellite navigation is one example. These devices can pinpoint a location anywhere on earth to within a few metres. Yet they can only do this because of the ultra-precise nature of the atomic clocks that control the system as the time signal sent from the navigation satellites travels at the speed of light which is nearly 300,000 km a second.

As light can travel such a vast distance in a second any atomic clock governing a satellite navigation system that was just one second out it would the positioning would be inaccurate by thousands of miles, rendering the positioning system useless.

There are many other technologies that require similar accuracy and also many of the ways we trade and communicate. Stocks and shares fluctuate up and down every second and global trade requires that everybody all over the world has to communicate using the same time.

Most computer networks are controlled by using a NTP server (Network Time Protocol). These devices allow computer networks to all use the same atomic clock based timescale UTC (coordinated universal time). By utilising UTC via a NTP server, computer networks can be synchronised to within a few milliseconds of each other.

NTP Server running a network (Part 2)

  |   By

Organising Strata

Stratum levels describe the distance between a device and the reference clock. For instance an atomic clock based in a physics laboratory or GPS satellite is a stratum 0 device. A stratum 1 device is a time server that receives time from a stratum 0 device so any dedicated NTP server is stratum 1. Devices that receive the time from the time server such as computers and routers are stratum 2 devices.

NTP can support up to 16 stratum levels and although there is a drop-off in accuracy the further away you go stratum levels are designed to allow huge networks to all receive a time from a single NTP server without causing network congestion or a blockage in the bandwidth.

When using a NTP server it is important to not overload the device with time requests so the network should be divided with a select number of machines taking requests from the NTP server (the NTP server manufacturer can recommend the number of requests it can handle). These stratum 2 devices can ten be used as time references for other devices (which become stratum 3 devices) on very large networks these can then be used as time references themselves.

Atomic Clock Synchronisation using MSF

  |   By

Accurate time using Atomic Clocks is available across Great Britain and parts of northern Europe using the MSF Atomic Clock time signal transmitted from Cumbria, UK; it provides the ability to synchronize the time on computers and other electrical equipment.

The UK MSF signal is operated by NPL – the National Physical Laboratory. MSF has high transmitter power (50,000 watts), a very efficient antenna and an extremely low frequency (60,000 Hz). For comparison, a typical AM radio station broadcasts at a frequency of 1,000,000 Hz. The combination of high power and low frequency gives the radio waves from MSF a lot of bounce, and this single station can therefore cover most of Britain and some of continental Europe.

The time codes are sent from MSF using one of the simplest systems possible, and at a very low data rate of one bit per second. The 60,000 Hz signal is always transmitted, but every second it is significantly reduced in power for a period of 0.2, 0.5 or 0.8 seconds: • 0.2 seconds of reduced power means a binary zero • 0.5 seconds of reduced power is a binary one. • 0.8 seconds of reduced power is a separator. The time code is sent in BCD (Binary Coded Decimal) and indicates minutes, hours, day of the year and year, along with information about daylight savings time and leap years.

The time is transmitted using 53 bits and 7 separators, and therefore takes 60 seconds to transmit. A clock or watch can contain an extremely small and relatively simple antenna and receiver to decode the information in the signal and set the clock’s time accurately. All that you have to do is set the time zone, and the atomic clock will display the correct time.

Dedicated time servers that are tuned to receive the MSF time signal are available. These devices connect o a computer network like any other server only these receive the timing signal and distribute it to other machines on the network using NTP (Network Time Protocol).

Utilising UTC

  |   By

To receive and distribute and authenticated UTC time source there are currently two types of NTP server, the GPS NTP server and the radio referenced NTP server. While both these systems distribute UTC in identical ways the way they receive the timing information differs.

A GPS NTP time server is an ideal time and frequency source because it can provide highly accurate time anywhere in the world using relatively cheap components.  Each GPS satellite transmits in two frequencies L2 for the military use and L1 for use by civilians transmitted at 1575 MHz, Low-cost GPS antennas and receivers are now widely available.

The radio signal transmitted by the satellite can pass through windows but can be blocked by buildings so the ideal location for a GPS antenna is on a rooftop with a good view of the sky. The more satellites it can receive from the better the signal. However, roof-mounted antennas can be prone to lighting strikes or other voltage surges so a suppressor is highly recommend being installed inline on the GPS cable.

The cable between the GPS antenna and receiver is also critical. The maximum distance that a cable can run is normally only 20-30 metres but a high quality coax cable combined with a GPS amplifier placed in-line to boost the gain of the antenna can allow in excess of 100 metre cable runs. This can provide difficulties in installation in larger buildings if the server is too far from the antenna.

An alternative solution is to use a radio referenced NTP time server. These rely on a number of national time and frequency radio transmissions that that broadcast UTC time. In Britain the signal (called MSF) is broadcast by the National Physics Laboratory in Cumbria which serves as the United Kingdom’s national time reference, there are also similar systems in the USA (WWVB) and in France, Germany and Japan.

A radio based NTP server usually consists of a rack-mountable time server, and an antenna, consisting of a ferrite bar inside a plastic enclosure, which receives the radio time and frequency broadcast. It should always be mounted horizontally at a right angle toward the transmission for optimum signal strength. Data is sent in pulses, 60 a second. These signals provides UTC time to an accuracy of 100 microseconds, however, the radio signal has a finite range and is vulnerable to interference.

2008 Will be a second longer Leap Second to be added to UTC

  |   By

New Year’s celebrations will have to wait another second this year as the International Earth Rotation and Reference Systems Service (IERS) have decided to 2008 is to have Leap Second added.

IERS announced in Paris in July that a positive Leap Second was to be added to 2008, the first since Dec. 31, 2005. Leap Seconds were introduced to compensate for the unpredictability of the Earth’s rotation and to keep UTC (Coordinated Universal Time) with GMT (Greenwich Meantime).

The new extra second will be added on the last day of this year at 23 hours, 59 minutes and 59 seconds Coordinated Universal Time — 6:59:59 pm Eastern Standard Time. 33 Leap Seconds have been added since 1972

NTP server systems controlling time synchronisation on computer networks are all governed by UTC (Coordinated Universal Time). When an additional second is added at the end of the year UTC will automatically be altered as the additional second. #

Whether a NTP server receives a time signal fro transmissions such as MSF, WWVB or DCF or from the GPS network the signal will automatically carry the Leap Second announcement.

Notice of Leap Second from the International Earth Rotation and Reference Systems Service (IERS)

SERVICE INTERNATIONAL DE LA ROTATION TERRESTRE ET DES SYSTEMES DE REFERENCE

SERVICE DE LA ROTATION TERRESTRE
OBSERVATOIRE DE PARIS
61, Av. de l’Observatoire 75014 PARIS (France)
Tel.      : 33 (0) 1 40 51 22 26
FAX       : 33 (0) 1 40 51 22 91
e-mail    : services.iers@obspm.fr
https://hpiers.obspm.fr/eop-pc

Paris, 4 July 2008

Bulletin C 36

To authorities responsible for the measurement and distribution of time

UTC TIME STEP
on the 1st of January 2009

A positive leap second will be introduced at the end of December 2008.
The sequence of dates of the UTC second markers will be:

2008 December 31,     23h 59m 59s
2008 December 31,     23h 59m 60s
2009 January   1,      0h  0m  0s

The difference between UTC and the International Atomic Time TAI is:

from 2006 January 1, 0h UTC, to 2009 January 1  0h UTC  : UTC-TAI = – 33s
from 2009 January 1, 0h UTC, until further notice       : UTC-TAI = – 34s

Leap seconds can be introduced in UTC at the end of the months of December

How a GPS Time Server Works

  |   By

A GPS time server is really a communication device. Its purpose is to receive a timing signal and then distribute it amongst all devices on a network. Time server s are often called different things from network time server, GPS time server, radio time server and NTP server.

Most time servers use the protocol NTP (Network Time Protocol). NTP is one of the Internet’s oldest protocols and is used by the majority of machines that use a time server. NTP is often installed, in a basic form, in most operating systems.

A GPS time server, as the names suggests, receives a timing signal from the GPS network. GPS satellites are really nothing more than orbiting clocks. Onboard each GPS satellite is an atomic clock. The ultra-precise time from this clock is what is transmitted from the satellite (along with the satellite’s position).

A satellite navigation system works by receiving the time signal from three or more satellites and by working out the position of the satellites and how long the signals took to arrive, it can triangulate a position.

A GPS time server needs even less information and only one satellite is required in order to receive a timing reference. A GPS time server’s antenna will receive a timing signal from one of the 33 orbiting satellites via line of sight, so the best place to fix the antenna is the roof.

Most dedicated GPS NTP time servers require a good 48 hours to locate and get a steady fix on a satellite but once they have it is rare for communication to be lost.

The time relayed by GPS satellites is known as GPS time and although it differs to the official global timescale UTC (Coordinated Universal Time) as they are both based on atomic time (TAI) GPS time is easily converted by NTP.

A GPS time server is often referred to as a stratum 1 NTP device, a stratum 2 device is a machine that receives the time from the GPS time server. Stratum 2 and stratum 3 devices can also be used as a time servers and in this way a single GPS time server can operate as a timing source for an unlimited amount of computers and devices as long as the hierarchy of NTP is followed.

Synchronising to an Atomic Clock

  |   By

Atomic clocks are the pinnacle of time keeping devices. Modern atomic clocks can keep time to such accuracy that in 100,000,000 years (100 million) they do not lose even a second in time. Because of this high level of accuracy, atomic clocks are the basis for the world’s timescale.

To allow global communication and time sensitive transactions such as the buying of stacks and shares a global timescale, based on the time told by atomic clocks, was developed in 1972. This timescale, Coordinated Universal Time (UTC) is governed and controlled by the International Bureau of weights and Measures (BIPM) who use a constellation of over 230 atomic clocks from 65 laboratories all over the world to ensure high levels of accuracy.

Atomic clocks are based on the fundamental properties of the atom, known as quantum mechanics.  Quantum mechanics suggest that an electron (negatively charged particle) that orbits an atom’s nucleus can exist in different levels or orbit planes depending if they absorb or release the correct amount of energy. Once an electron has absorbed or released enough energy in can ‘jump’ to another level, this is known as a quantum jump.

The frequency between these two energy states is what is used to keep time. Most atomic clocks are based on the caesium atom which has 9,192,631,770 periods of radiation corresponding to the transition between the two levels. Because of the accuracy of caesium clocks the BIPM now considers a second to be defined as 9,192,631,770 cycles of the caesium atom.

Atomic clocks are used in thousands of different applications where precise timing is essential. Satellite communication, air traffic control, internet trading and GPs all require atomic clocks to keep time. Atomic clocks can also be used as a method of synchronising computer networks.

A computer network using a NTP time server can use either a radio transmission or the signals broadcast by GPS satellites (Global Positioning System) as a timing source. The NTP program (or daemon) will then ensure all devices on that network will be synchronised to the time as told by the atomic clock.

By using a NTP server synchronised to an atomic clock, a computer network can run the identical coordinated universal time as other networks allowing time sensitive transactions to be conducted from across the globe.

Arranging a NTP Server Stratum Tree

  |   By

NTP (Network Time Protocol) is the most widely used time synchronisation protocol on the Internet. The reason for its success is that is both flexible and highly accurate (as well as being free). NTP is also arranged into a hierarchical structure allowing thousands of machines to be able to receive a timing signal from just one NTP server.

Obviously, if a thousand machines on a network all attempted to receive a timing signal from the NTP server at the same time the network would become bottlenecked and the NTP server would be rendered useless.

For this reason, the NTP stratum tree exists. At the top of the tree is the NTP time server which is a stratum 1 device (a stratum 0 device being the atomic clock that the server receives its time from). Below the NTP server, several servers or computers receive timing information from the stratum 1 device. These trusted devices become stratum 2 servers, which in turn distribute their timing information to another layer of computers or servers. These then become stratum 3 devices which in turn can distribute timing information to lower strata (stratum 4, stratum 5 etc).

In all NTP can support up to nine stratum levels although the further away from the original stratum 1 device they are the less accurate the synchronisation. For an example of how a NTP hierarchy is setup please see this stratum tree

Keeping Time with Network Time Protocol

  |   By

NTP (Network Time Protocol) is the most flexible, accurate and popular method of sending time over the Internet. It is perhaps the Internet’s oldest protocol having been around in one form or another since the mid 1980’s.

The main purpose of NTP is to ensure that all devices on a network are synchronised to the same time and to compensate for some network time delays. Across a LAN or WAN NTP manages to maintain an accuracy of a few milliseconds (Across the Internet, time transfer if far less accurate due to network traffic and distance).

NTP is by far the most widely used time synchronisation protocol (somewhere in the region of 95% of all time servers use NTP) and it owes much of its success to its continual updates and its flexibility. NTP will run on UNIX, LINUX, and Windows based operating systems (it is also free, another possible reason for its huge success).

NTP uses a single time source that it distributes among all devices on a network; it also checks each device for drift (the gaining or losing of time) and adjusts for each.  It is also hierarchical in that literally thousands of machines can be controlled using just one NTP server as each machine can in itself be used by neighbouring machines as a time server.

NTP is also highly secure (when using an external time reference not when using the Internet for a timing source) with an authentication protocol able to establish exactly where a timing source comes from.

For a network to be really effective most NTP time servers use an atomic clock as a basis for their time synchronisation. An international timescale based on the time told by atomic clocks has been developed for this very purpose. UTC (Coordinated Universal Time).

There are really two methods to receive a secure UTC atomic clock time signal to be utilised by NTP. The first being the time and frequency transmissions that several national physics laboratories broadcast on long wave around the world; the second (and by far the most readily available) is by using the timing information in the GPS satellite transmissions. These can be picked up anywhere on the globe and provide safe, secure and highly accurate timing information.